Genetic Engineering: Increasing the uptake of carbon dioxide

A mechanism for concentrating carbon dioxide has for the first time been successfully transferred into a species that lacks such a process.
  1. Eric Franklin
  2. Martin Jonikas
  1. Department of Molecular Biology, Princeton University, United States

Look around: how many things do you see made of wood, cloth or plastic? These items may seem wildly different, but they all contain organic carbon and, therefore, they can only exist because plants, algae and certain bacteria are constantly using photosynthesis to turn sunlight, water and atmospheric carbon dioxide (CO2) into most of our food, furniture and fuel (Fischer et al., 2016). However, this process has gotten more difficult over time. Modern CO2 levels are less than 1% of what they were when photosynthetic organisms first evolved, making the work of Rubisco, the enzyme that converts CO2 into organic molecules, more difficult. In turn, the slow rate of CO2 uptake limits the growth of many plants, including crops such as rice and wheat (Long et al., 2006).

Introduction

TNF Receptor Associated Factor 2 (TRAF2) is an adaptor protein that transduces signals following ligation of certain cytokine receptors including those binding TNF. It was first identified together with TRAF1 as a component of TNF receptor-2 and then TNF receptor-1 (TNFR1) signalling complexes (Rothe et al., 1994; Shu et al., 1996). TRAF2, like most other TRAFs, contains a RING domain, several zinc fingers, a TRAF-N, and a conserved TRAF-C domain which is responsible for oligomerisation and receptor binding through its MATH region (Takeuchi et al., 1996; Uren and Vaux, 1996).

RING domains are nearly always associated with ubiquitin E3 ligase activity (Shi and Kehrl, 2003) and TRAF2 can promote ubiquitylation of RIPK1 in TNFR1 signalling complexes (TNFR1-SC) (Wertz et al., 2004). However TRAF2 recruits E3 ligases such as cIAPs to TNFR1-SC and these have also been shown to be able to ubiquitylate RIPK1 and regulate TNF signalling (Dynek et al., 2010; Mahoney et al., 2008; Varfolomeev et al., 2008; Vince et al., 2009). This makes it difficult to unambiguously determine the role of the E3 ligase activity of TRAF2.

Activation of JNK and NF-κB by TNF is reduced in cells from Traf2-/- mice while only JNK signalling was affected in lymphocytes from transgenic mice that express a dominant negative (DN) form of TRAF2 that lacks the RING domain (Lee et al., 1997; Yeh et al., 1997). Traf2-/-Traf5-/- mouse embryonic fibroblasts (MEFs) have a pronounced defect in activation of NF-κB by TNF, suggesting that absence of TRAF2 can be compensated by TRAF5 (Tada et al., 2001). Although activation of NF-κB was restored in Traf2-/-Traf5-/- cells by re-expression of wild type TRAF2, it was not restored when the cells were reconstituted with TRAF2 point mutants that could not bind cIAPs (Vince et al., 2009; Zhang et al., 2010). These data, together with a wealth of different lines of evidence showing that cIAPs are critical E3 ligases required for TNF-induced canonical NF-κB (Blackwell et al., 2013; Haas et al., 2009; Silke, 2011), support the idea that the main function of TRAF2 in TNF-induced NF-κB is to recruit cIAPs to the TNFR1-SC. However, it remains possible that the RING of TRAF2 plays another function, such as in activating JNK and protecting cells from TNF-induced cell death (Vince et al., 2009; Zhang et al., 2010). Furthermore it has been shown that TRAF2 can K48-ubiquitylate caspase-8 to set the threshold for TRAIL or Fas induced cell death (Gonzalvez et al., 2012). Moreover, TRAF2 inhibits non-canonical NF-κB signalling (Grech et al., 2004; Zarnegar et al., 2008) and this function requires the RING domain of TRAF2 to induce proteosomal degradation of NIK (Vince et al., 2009). However, structural and in vitro analyses indicate that, unlike TRAF6, the RING domain of TRAF2 is unable to bind E2 conjugating enzymes (Yin et al., 2009), and is therefore unlikely to have intrinsic E3 ligase activity.

Sphingosine-1-phosphate (S1P) is a pleiotropic sphingolipid mediator that regulates proliferation, differentiation, cell trafficking and vascular development (Pitson, 2011). S1P is generated by sphingosine kinase 1 and 2 (SPHK1 and SPHK2) (Kohama et al., 1998; Liu et al., 2000). Extracellular S1P mainly acts by binding to its five G protein-coupled receptors S1P1-5 (Hla and Dannenberg, 2012). However, some intracellular roles have been suggested for S1P, including the blocking of the histone deacetylases, HDAC1/2 (Hait et al., 2009) and the induction of apoptosis through interaction with BAK and BAX (Chipuk et al., 2012).

Recently, it was suggested that the RING domain of TRAF2 requires S1P as a co-factor for its E3 ligase activity (Alvarez et al., 2010). Alvarez and colleagues proposed that SPHK1 but not SPHK2 is activated by TNF and phosphorylates sphingosine to S1P which in turn binds to the RING domain of TRAF2 and serves as an essential co-factor that was missing in the experiments of Yin et al. Alvarez and colleagues, observed that in the absence of SPHK1, TNF-induced NF-κB activation was completely abolished.

Although we know a lot about TRAF2, there are still important gaps particularly with regard to cell type specificity and in vivo function of TRAF2. Moreover, despite the claims that SPHK1 and its product, S1P, are required for TRAF2 to function as a ubiquitin ligase, the responses of Traf2-/- and Sphk1-/- cells to TNF were not compared. Therefore, we undertook an analysis of TRAF2 and SPHK1 function in TNF signalling in a number of different tissues.

Surprisingly, we found that neither TRAF2 nor SPHK1 are required for TNF mediated canonical NF-κB and MAPK signalling in macrophages. However, MEFs, murine dermal fibroblasts (MDFs) and keratinocytes required TRAF2 but not SPHK1 for full strength TNF signalling. In these cell types, absence of TRAF2 caused a delay in TNF-induced activation of NF-κB and MAPK, and sensitivity to killing by TNF was increased. Absence of TRAF2 in keratinocytes in vivo resulted in psoriasis-like epidermal hyperplasia and skin inflammation. Unlike TNF-dependent genetic inflammatory skin conditions, such as IKK2 epidermal knock-out (Pasparakis et al., 2002) and the cpdm mutant (Gerlach et al., 2011), the onset of inflammation was only delayed, and not prevented by deletion of TNF. This early TNF-dependent inflammation is caused by excessive apoptotic but not necroptotic cell death and could be prevented by deletion of Casp8. We observed constitutive activation of NIK and non-canonical NF-κB in Traf2-/- keratinocytes which caused production of inflammatory cytokines and chemokines. We were able to reverse this inflammatory phenotype by simultaneously deleting both Tnf and Nfkb2 genes. Our results highlight the important role TRAF2 plays to protect keratinocytes from cell death and to down-regulate inflammatory responses and support the idea that intrinsic defects in keratinocytes can initiate psoriasis-like skin inflammation.

Article & author information

Author contributions

  • BRK, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article
  • HK, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article
  • KS, Conception and design, Drafting or revising the article

For correspondence

kscott@berkeley.edu (KS)

Competing interests

The authors declare that no competing interests exist.

Funding

National Institute on Deafness and Other Communication Disorders
R01 DC013280

Kristin Scott

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Other versions

You are viewing the most recent version of this article.

  • Previous version (November 17, 2015)
  • Previous version (November 14, 2015)

Identification

DOI: 10.7554/eLife.11188
Cite this as: eLife 2015;4:e11188

Publication history

  • Received August 27, 2015.
  • Accepted November 12, 2015.
  • Published November 14, 2015.

Reviewing editor

Mani Ramaswami, Reviewing editor, Trinity College Dublin, Ireland

Article download links

A three part list of links to download the article, or parts of the article, in various formats.

Downloads (links to download the article or parts of the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lee R Berger
  2. John Hawks
  3. Darryl J de Ruiter
  4. Steven E Churchill
  5. Peter Schmid
  6. Lucas K Delezene
  7. Tracy L Kivell
  8. Heather M Garvin
  9. Scott A Williams
  10. Jeremy M DeSilva
  11. Matthew M Skinner
  12. Charles M Musiba
  13. Noel Cameron
  14. Trenton W Holliday
  15. William Harcourt-Smith
  16. Rebecca R Ackermann
  17. Markus Bastir
  18. Barry Bogin
  19. Debra Bolter
  20. Juliet Brophy
  21. Zachary D Cofran
  22. Kimberly A Congdon
  23. Andrew S Deane
  24. Mana Dembo
  25. Michelle Drapeau
  26. Marina C Elliott
  27. Elen M Feuerriegel
  28. Daniel Garcia-Martinez
  29. David J Green
  30. Alia Gurtov
  31. Joel D Irish
  32. Ashley Kruger
  33. Myra F Laird
  34. Damiano Marchi
  35. Marc R Meyer
  36. Shahed Nalla
  37. Enquye W Negash
  38. Caley M Orr
  39. Davorka Radovcic
  40. Lauren Schroeder
  41. Jill E Scott
  42. Zachary Throckmorton
  43. Matthew W Tocheri
  44. Caroline VanSickle
  45. Christopher S Walker
  46. Pianpian Wei
  47. Bernhard Zipfel
(2015)
Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa
eLife 4:e09560.
https://doi.org/10.7554/eLife.09560

References